服務熱線: 400-018-5117
最新動態 / News more
發布時間: 2020 - 05 - 27
2020注定是不平凡的一年!美股4次熔斷,疫情讓股神巴菲特也感嘆「活久見」;但疫情期間網上流傳的一個視頻爆表了:被防護服包裹的醫生戴著智能頭盔,把實時影像直接傳到后臺的專家會診團隊;機器人不知疲倦地在給每個病房送藥;無人機在空中提醒著聚集的人群; 更有小萌機器人幫主人上街買菜…這次疫情,讓我們重新認識了,物聯網和人工智能潛在的巨大市場價值!或許,股神鷹一樣的眼神,也在這個市場中尋求最大的潛力股。我們可以任意猜想,他的下一目標是在哪里呢?優化物聯網終端和智能設備的功耗和續航能力是產品成功的關鍵,特別是應用于超長年限和難以維護的物聯網應用場景。如埋在水泥下的停車場感應裝置、遠洋海洋水文和氣候監測系統。維護簡單、但數量巨大的物聯網場景、如智能電表、水表、氣表等千家萬戶的場景。功耗和續航性能也不容忽視,因為維護成本同樣讓企業難以承受。無線性能和功耗測評是物聯網終端產品設計驗證的重要工作,也是最容易出現問題的環節。在2月份是德科技公眾號給大家分享了《物聯網產品的研發測試整體方案》文章,給工程師小伙伴們介紹了這套研發神器,全面評估產品的射頻特性和功耗,估計大家還記憶猶新。今天,我們來更深入地談功耗問題。過去兩年,我們幫助了眾多工程師服務評估了他們的產品功耗,包括終端、器件模塊、芯片、運營商等等,要求也是千差萬別,真可謂八仙過海各顯神通。但萬變不離其宗,我們概括總結為“功耗優化的三件套”思維。因此,工程師小伙伴們要設計出長續航時間的產品,考慮不僅有硬件設計,還要有軟件和電池。我們來看下圖,這是一個典型的物聯網終端的電流工作狀態,我們依次給伙伴們三個提示:第一個提示:從圖上可以看出,物聯網終端的電流以極低的占空比的脈沖電流形式出現,平均電流只有8uA,但峰值電流高達11mA,而出現峰值電流時,由于電池內阻的影響,電池的端電壓會有明顯的下降。以此類推,如果峰值電流更高,如智能門鎖開...
發布時間: 2020 - 05 - 26
在使用有源探頭進行測試時,最容易出現的錯誤就是超出探頭的動態范圍使用,我們也經常收到客戶的電話,說同時使用有源探頭和無源探頭測同一個信號,有源探頭的電壓低于無源探頭,究其原因,大部分情況下都是因為對動態范圍和耐壓范圍的理解錯誤造成的。以是德科技N2795A有源探頭為例,其耐壓范圍是正負20V,輸入動態范圍是正負8V,偏置范圍是正負8V: 輸入動態范圍的定義是輸入動態范圍是指探頭所能測試的在示波器屏幕中心線上下的電壓范圍,比如±2.5V動態輸入范圍的探頭,只能測量示波器屏幕中心線上下2.5V范圍內的電壓,如果輸入信號波動超出這個范圍,反映在測量波形上來說就是波形被削波,測量的幅度偏小。根據定義,也就是說使用N2795A的探頭時可以測量示波器屏幕中心線上下8V內的波形:而當我們直接測量0-16V的正弦波時,由于波形超出了屏幕中心線8V以上的范圍,就會造成波形失真,使得測試結果偏低。此時就要用到探頭/示波器的偏置能力: 偏置能力的定義是:偏置能力是指能夠把0V電壓基準線調整到和示波器屏幕中心線電壓差的能力,根據信號的直流分量設置合適偏置,可以把具有直流分量的動態信號調整到示波器屏幕中心線附近,以滿足探頭動態輸入范圍的要求; 比如上面失真的測試波形,如果把波形設置為8V的偏置,使得波形繼續顯示在屏幕中心,就可以正確的測試0-16V的正弦波電壓:因此,探頭的最大輸入電壓并不一定是可測量電壓范圍,可測量電壓范圍應該是其動態范圍加上偏置范圍,當然,這個時候要合理使用偏置設定,使測試波形永遠顯示在其動態范圍內。------轉自是德科技
最新案例 / Case more
sv_complex.aspx?Fid=n8:8:8
最新方案 / Soluon more
發布時間: 2019 - 08 - 21
如果您需要捕獲的信號是低占空比脈沖或猝發信號,并且信號之間有較長的空閑時間(例如封包串行數據),那么配有分段存儲器的示波器可以有效地延長時間并提高以較高采樣率捕獲的串行數據包數量。所有示波器都具有數量有限的采集存儲器。您應當知道,示波器的存儲器深度決定波形時間和以特定采樣率捕獲到的串行數據包數量。您可以將示波器的時基設為很慢的時間 / 格設置,以便延長捕獲時間間隔并增加串行數據包數量;但是當時基設置超出基于最高采樣率下的最大時間間隔時,示波器便會自動降低采樣率。在這種情況下,示波器無法提供精確的水平和垂直波形細節(基于示波器的指定帶寬和最大采樣率)。為什么需要分段存儲?如果需要捕獲較長時間和更多的串行數據包,同時仍在高采樣率下進行數字化處理,只需購買配備更深存儲的示波器即可。然而,配有千兆級采集存儲器的示波器非常昂貴。如果需要采集的信號在重要波形分段(例如低占空比脈沖或串行數據包猝發)之間具有較長的信號空閑時間,那么具有分段存儲器采集功能的示波器是更為經濟的解決方案?!静东@時間 = 存儲深度 / 采樣率】通過將示波器的可用采集存儲器劃分為較小的存儲器分段,分段存儲采集模式可以有效地延長示波器的總采集時間。示波器可以在高采樣率下,有選擇性地針對被測波形的重要部分進行數字化處理。由此,示波器能夠以極快的重新準備時間捕獲很多的連續單次波形,同時不會錯過重要的信號信息。
資訊 News

滄海桑田話抖動(上)

日期: 2019-08-28
瀏覽次數: 218

【干貨】滄海桑田話抖動(上)


滄海桑田話抖動(上)

如果要評選電子工程師近20年來的最耳熟能詳的專業詞匯,眼圖抖動作為孿生姊妹一定在前10之列。所以業界關于抖動的論述和文章也是時常見諸各種媒體和平臺。

本期微信頭條,小K也將就抖動測試做一個專題介紹,本期主要包括如下主題:

01.?抖動研究的源起

02.?抖動測試和分析的基本方法和經典理論

03.?抖動測試的演進和新挑戰(上)

(本篇共 6000 字左右,預計需要 20 分鐘,分時閱讀建議浮窗觀看。)


滄海桑田話抖動(上)

抖動研究的源起

抖動測試最早在上個世紀80年代開始萌芽,HP公司電信網絡測試部門-蘇格蘭科技公司1982年在蘇格蘭推出了針對PDH(Plesiochronous Digital Hierarchy,準同步數字體系)的第一個抖動測量儀器,速率高達E3和DS3,之后在1984年推出首批140 Mb / s抖動測試儀之一。

在90年代推出針對SONET / SDH抖動測試產品和方案。事實上在同步數字傳輸體系(SONET/SDH)和通訊系統中引入抖動的概念主要用于評估數據包級的傳輸延時偏差。因此大家也可以看到經典抖動定義也來自于當年的業界巨擘貝爾實驗室。

進入90年代以后,隨著數字電路系統中的源同步時鐘總線的發展,由于外部同步時鐘頻率漸漸成為瓶頸開始轉向嵌入式時鐘的串行差分總線,非常典型的就是PCI總線同步時鐘頻率最高到133MHz就開始轉向PCIE1.0 2.5Gbps發展。由此對數字電路系統中的水平時間參數的測量也從傳統的Setup/Hold或Skew測量轉為水平方向Jitter的測量。

在今天,抖動測試除了是很多高速串行總線和標準的一致性測試眾多項目中的重要組成部分和內容,同時還是針對系統級傳輸性能評估的重要方法,以及探究系統問題根源的重要手段。因此對抖動進行深入的探索和研究無論何時都具有深刻的意義和價值。



滄海桑田話抖動(上)

抖動測試和分析的基本方法和經典理論

在90年代,伴隨著數字電路和系統的串行差分化的同時以x86處理器為核心的軟硬件系統廣泛應用于各行業,當然也包括測試測量行業,示波器也開始全面武裝更強大的x86處理器和windows操作系統,隨之而來的是各種算法程序的全面發展和推進,這其中就包括了抖動測量算法分離的經典理論。

下圖顯示的是充斥于各種文獻的抖動測量中三種基本的抖動算法:

滄海桑田話抖動(上)

圖1 基本抖動算法示意圖

周期抖動算法比較簡單,以信號本身的每個周期值為樣本進行統計分析,可以反映所有樣本的平均值及個體與圓心即平均值偏差的情況,用于一般的時鐘信號的評估。

周期-周期抖動以兩個相鄰周期的周期差值為樣本進行統計分析,很明顯這是對信號周期的一階微分運算,這一指標對分析鎖相環的性能時有很高價值。由此還衍生出N周期—N周期抖動,比如針對DDR總線的時鐘測試中就有5/10個連續時鐘周期抖動的測試。

第三個度量方法,時間間隔誤差(Time Interval Error,簡稱TIE)抖動,有時也被稱作相位抖動(Phase Jitter),以每個周期點的累計時間值相對當前時間點的理想值偏差為樣本進行統計分析,這個時間偏差算法呈現累積效應,是一個積分運算,可以反映出信號的長期抖動,而這一理想位置則需要通過軟件時鐘恢復(實時示波器方法)或者通過外部輸入/硬件時鐘恢復(采樣示波器方法)得到一個參考時鐘作為運算的基準。

TIE抖動在今天的數字電路與通信系統中已經成為分析數據傳輸中的抖動指標和性能的最為通用的抖動度量方法。關于以上三個經典抖動算法定義和描述,推薦閱讀Ref [6]-- PCI ExpressTM Jitter Modeling Revision 1.0RD.

滄海桑田話抖動(上)

圖2 時間間隔誤差抖動測量方法示意圖

除了上述三個度量方法還有常用到的三個統計學參數:

  • 平均值:相對絕對值的一個固定偏移或偏差,通常不重要因為可以修正。

  • RMS抖動:通常用于表征隨機抖動成分。

  • Peak-to-Peak抖動:可用于表征確定性(有界)和隨機(無界)抖動分量,另外必須在給定的BER下引用或考慮隨機(無界)抖動。


?小測驗:?

在實時示波器進入windows時代前,業界的老師傅們經常用無限余輝累積觸發位置后的一個時鐘周期邊沿,然后用光標測量邊沿累積后的時間寬度值,如下圖示,請問這是哪種抖動?

A.?周期抖動? ??B.?周期-周期抖動? ?C.?TIE抖動

滄海桑田話抖動(上)

圖3 實時示波器上經典抖動測量示意圖

滄海桑田話抖動(上)

?小思考:?

采樣示波器在進行分析眼圖時也會得到一個抖動測量值,這又是什么抖動呢?

A.?周期抖動? ??B.?周期-周期抖動? ?C.?TIE抖動

必須要說明的是,業界針對抖動的研究和分析其實最初是從采樣示波器開始。因為上個世紀90年代末采樣示波器相比實時示波器可以實現的帶寬更高(因為等效采樣無需高采樣率配套,且無需考慮普遍信號測試需求通常輸入信號幅度有限因此無衰減和放大器電路因而帶寬更高),同時高ADC位數提供的測量精度也更高,因此首先被用于高速芯片及一些器件如光模塊等串行數據的眼圖分析,并根據眼圖結果衍生出抖動分析和測量。

基于眼圖堆疊和測量結果,為了評估數字串行總線傳輸的總體性能因此引入抖動的分析和評估理論。采用的重要評價指標是特定誤碼率(通常是10E-12)水平下的總抖動Tj @ BER,因為Eye Open= 1UI – Tj @BER。

那么如何得到總體抖動這一結果呢?

滄海桑田話抖動(上)

圖4 典型的串行傳輸鏈路中的抖動根源

一種方法是根據上圖中抖動根源按圖索驥分別測量得到Rj和各種Dj成分然后卷積得到給定誤碼水平下的抖動概率密度函數然后推算出Tj。顯然這一方法的可操作性不高尤其是早年基于采樣示波器疊加的眼圖結果進行抖動分析的狀況。

另一種方法就是雙狄拉克模型法(Dual-Dirac Model),通過測量和計算Rj(δ)與Dj(δδ)再根據如下公式:

[email protected] = n x Rj +Dj

計算得到[email protected]。通常10E-12誤碼水平時n=14?(因篇幅限制,本文不就n與BER關系做過多描述,參考Ref[1])。


?雙狄拉克模型法有5個假設前提:?

1.?總體抖動可以分解為Rj和Dj

2.?RJ遵循高斯分布,可以用單個相關參數的術語進行完整描述,RJ的rms值分布,或等效地,高斯分布的標準偏差σ

3.?Dj遵循有限和有邊界的分布

4.?DJ遵循由兩個Dirac-delta函數形成的分布。兩個delta函數的時間延遲分離給出了雙狄拉克模型相關DJ,如下圖所示

5.?抖動是一種靜止現象或者可重復觀測。也就是說,測量了在適當的時間間隔內對給定系統的抖動后無論何時再啟動該時間間隔范圍的測量,都會給出相同的結果

雙狄拉克模型法基于眼圖左右交叉點的抖動直方圖,提供了最簡單的概率密度函數:交叉點分為兩個Dirac-delta函數,位于μL和μR(DJ主導區域),然后采用人為擬合快速過渡到RJ主導的尾部。有許多方法可以實現雙狄拉克模型,在所有這些模型中,估計總體抖動的主要問題是如何描述抖動分布尾部的問題,兩個標準偏差為σ的高斯分布的尾部由固定量DJ(δδ)= |μL - μR|分隔。

滄海桑田話抖動(上)

圖5 雙狄拉克模型分解RJ和DJ示意圖

有的時候還會經??吹搅硪粋€測量結果DJ(p-p),這個如何理解?

真實的DJ從不遵循簡單的雙狄拉克分布,因此期望從雙狄拉克模型中提取的DJ接近實際的峰峰值DJ是不合理的。DJ(δδ)是模型相關量,必須在假設DJ遵循由兩個Dirac-delta函數形成的分布的情況下導出,如圖5所示。

相比DJ(δδ)總是可以測量得到,而DJ(p-p)只能在特定情況下可測。比如當DJ僅由數據相關抖動(DDJ)組成時,可以通過比較重復數據碼型的平均跳變次數來測量。通常DJ(δδ)小于DJ(p-p)。因此總結,DJ(δδ)定義明確且可測,而DJ(p-p)僅能在特定情況下測量得到,而且對估計總體抖動沒有作用。

順便提一下,雖然DJ(p-p)無法測量且意義不大,但是DJ的子成分如DDJ(p-p)和ISI(p-p)卻是有界且可測,在實時抖動分析結果里經??梢钥吹?。

針對一個典型的包含發送端,傳輸鏈路以及接收端以及CLK的典型系統架構,比如PCIExpress:

滄海桑田話抖動(上)

圖6 典型的PCIExpress架構

通過分別測量和分析得到系統各單元的Rj標準偏差和Dj(δδ)后可以得到整個系統的抖動參數:

滄海桑田話抖動(上)

之后就可以得到整個系統在特定誤碼率下的總體抖動。關于雙狄拉克模型的相關原理及知識,請參考Ref [1].

由于采樣示波器在早期只是純粹進行眼圖疊加進而進行總體抖動估算而很難對具體的成因進行分析,因此無法滿足很多的應用需求(直到2006年左右在采樣示波器上開發出碼型同步觸發技術從而可以穩定捕獲特定碼型比如不長于2?16的PRBS碼型,才引入了抖動分解技術)。

隨著實時示波器在平臺和性能上的大幅提升,在實時示波器上進行抖動分析越來越普遍并漸漸成為主流。實時示波器無需外部觸發或同步時鐘信號,同時相比采樣示波器具有長內存可以一次觸發采集一定時長的波形用于抖動分析進而做出對實際工作有指導性的抖動分解結果。

那么首先實時示波器如何進行抖動分析呢?

如下圖示,實時示波器首先捕獲一定時長的波形,然后基于特定標準的數據的時鐘恢復算法通常為一階或二階鎖相環,帶寬因標準差異而不同,針對CLK通常采用Constant CLK即首先計算周期的平均值得到基準,分析得到信號的TIE抖動。

基于此TIE抖動結果,抖動分析軟件會分析得到抖動趨勢圖(Trend),這一趨勢圖提供了每個時間點的數據邊沿位置相對于理想位置時間差即TIE的趨勢圖。如果是數據相關抖動DDJ如ISI則會顯示出與數據碼型的強相關性,如果是周期性抖動Pj成分則會顯示出與其它特定頻率信號的相關性。

分析抖動的另一種方法是采用頻域角度,針對TIE抖動趨勢圖做FFT數學函數,基于重復頻率成分的抖動視圖角度。在這種情況下,數據結果被處理繪制為垂直軸上的定時誤差值與水平軸上的頻率。這個角度在尋找與數據本身特征不相關的周期抖動Pj時,會特別有用。

實時抖動分析軟件還提供了“直方圖”視圖,將抖動分析結果顯示為概率分布的函數(PDF)(數據記錄中所有TIE測量結果合成),表現為定時誤差與命中數(N)的二維顯示。實時直方圖的結果應該與從眼圖產生的重復直方圖的測量結果密切相關。但是,通過實時采樣的長存儲深度,可以從單次采集信號中獲得更多數據。此外,基于實時示波器的重復多次采樣,可以產生更準確和完整的PDF。

滄海桑田話抖動(上)

圖7? EZJIT軟件實時抖動分析的處理方法

Keysight實時示波器抖動分析軟件EZJIT提供的功能就到這里。

然后,實時抖動分析軟件是如何進行一步步的抖動成分分解的? 抖動分解是EZJIT PLUS的功能。如Ref[2] [3]文獻描述,根據經典抖動成因分解模型:

滄海桑田話抖動(上)

圖8? 經典抖動成因分解模型

首先第一步,根據數據碼型特點(在EZJIT Plus軟件里可以選擇Periodic Data 或Arbitrary Data)將DDJ(數據相關抖動,主要是ISI即碼間干擾)和RJ和PJ(與數據無關抖動成分)分離開來;根據DCD和ISI的不同表現再進行分離。

有時甚至可以采用發送特定如101010…碼型以準確測量DCD抖動。在Arbitrary Data模式下EZJIT PLUS軟件使用線性回歸技術從TJ中提取DDJ。這種線性回歸類似回聲消除或其他自適應濾波應用。這一線性回歸技術要求設定一組系數來描述數據相關抖動的如何從傳輸的數據碼型計算,EZJIT PLUS軟件里指這套系數為ISI Filter。(關于如何設定ISI Filter請參考Ref [5])

滄海桑田話抖動(上)
滄海桑田話抖動(上)

圖9 典型DCD(左)和ISI(右)

第二步,基于第一步已經去除了DDJ成分的頻譜圖將PJ和RJ分離。對功率譜密度積分推導出RJrms,PJ成分求和可以得到PJrms。針對RJ的特性在EZJIT Plus軟件里可以設定RJ的帶寬,如白噪聲為寬帶寬,粉紅噪聲為窄帶寬。(相關說明請參考Ref[3])

滄海桑田話抖動(上)

圖10 分離了DDJ后高于設定閾值的被當作PJ,去除后就可以根據剩余的頻譜分量計算RJrms

第三步,根據TIE的直方圖視圖結果基于前面描述的雙狄拉克模型法擬合出DJ(δ-δ)。結合前面的頻譜法擬合出的RJrms,就可以確定要求的誤碼率水平下的總體抖動即[email protected],基于此可以繪出浴盆曲線(Bath Tub)等圖表。

到這里EZJIT PLUS就完成了實時示波器的抖動分析和分解的全部過程,最終輸出包括分解完畢的各個抖動分量值,總體抖動@給定BER水平,浴盆曲線等。這也是我們進行抖動分析和分解最終需要得到的結果。

為了獲得準確的分析和測量結果在進行實時抖動軟件分析時必須進行正確的設置,包括恰當的信號垂直刻度,足夠的波形數據也就是捕獲時長,以及足夠的采樣率設置等等因素,另外針對前面提到的包括數據周期重復模式還是任意碼型,RJ帶寬及噪聲設置,以及如何設置ISI濾波器尺寸等詳細請參考文末所列參考文獻2,3,4,5等。

另外要強調的是足夠的波形數據和捕獲時長除了可以捕獲更多的時鐘周期或數據UI進行更準確的抖動分析外也意味著可以捕獲更低頻的抖動因為捕獲的整個波形周期更長,這也是示波器長存儲的重要價值之一。



滄海桑田話抖動(上)

抖動測試的演進和新挑戰(上)

早年的經典抖動定義和分析分解方法在21世紀初基本已經確立,是通用串行電路分析的重要方法之一。但是隨著數據速率的持續推高和電路復雜程度的加深比如鏈路寬度以及對均衡算法的應用等因素,特定標準的抖動定義和算法也在不斷演進。

典型如PCIExpress3.0/4.0針對TX抖動測試重新進行了規劃,定義TP1測試點(發送端芯片封裝管腳處)抖動分為數據相關抖動和數據不相關成分。數據相關抖動成分主要源于封裝損耗和反射等信號完整性效應。而數據不相關成分則源于PLL抖動,電源噪聲和多鏈路之間串擾等。

PCIE4.0 Base規范里明確說明了之所以做如此分離的原因,因為這種分離與Tx和Rx均衡能力很好地匹配,Tx或Rx均衡不會減輕不相關的抖動成分,也無法通過均衡恢復水平時間窗口裕量即降低抖動或得到更加張開的水平眼圖。重要的是,通過均衡可恢復的裕量(數據相關成分)不作為不可恢復的抖動計入預算。

從Tx測量中去除了數據相關的抖動,就可以分析剩余的抖動成分,計算剩余抖動成分的UTj和確定性抖動(雙狄拉克模型)UDJDD分量。高頻抖動(在通道中受到抖動放大)由分離的TTX-UPW-DJDD和TTX-UPW-TJ參數來解決。

滄海桑田話抖動(上)

圖11? PCIE4.0 Base規范里描述的DDJ測量和定義

并引入了全新的PWJ,Pulse Width Jitter:

滄海桑田話抖動(上)

圖 12 PCIE3.0/4.0引入PWJ

滄海桑田話抖動(上)

圖13 PCIE4.0 Base規范定義的抖動測量項目

在PCIE4.0 Base規范中,最終定義了如上表的分析項目??梢钥吹?,除了針對性的就DDJ專門做了定義并分離,針對Uncorrelated Jitter依然采用了前面描述的經典抖動分析和分解理論進行分析。關于最新的PCIE4.0標準中,針對抖動測量和分析的定義請參考PCIE4.0 Base規范,Ref [6]。

傳統的抖動測試軟件EZJIT作為通用抖動分析軟件,沒有按照PCI Express的新定義進行抖動分析和處理,因此如果需要進行完全符合PCI Express標準和規范的抖動分析就需要借助于實時示波器上的一致性測試軟件如D9040PCIC測試軟件,針對PCIE4.0 Base測試點有非常全面的抖動測試項目如下圖示:

滄海桑田話抖動(上)

圖14? Keysight D9040PCIC一致性測試軟件測試項目

除了PCIE標準外,其它一些標準在抖動定義和測量分析方面也有很多發展和演進,比如USB3.x標準作為典型的接口一致性測試規定不同的測試碼型,奈奎斯特碼型CP1或者CP10用于RJ,PRBS碼型CP0或CP9用于Tj測試,當然也需要一致性測試軟件進行測試,具體不做更多舉例。

另外針對多鏈路傳輸如IEEE 802.3系列標準在實現200G/400G時,相對早期單鏈路串行總線的抖動定義和測量分析,必須考慮跨鏈路的數據串擾引起的抖動,如下圖所示:

滄海桑田話抖動(上)

圖15? 更全面的抖動成分分解模型

這種串擾或者地彈等引起的抖動,呈現為非周期,有界和與數據無關的特性,因此命名為ABUJ(Aperiodic Bunded Uncorrelated Jitter )。

針對這一新的抖動成因,繼續采用EZJIT Plus軟件的頻譜法分析時,會存在將這一由串擾引起的ABUJ歸入RJ的風險,從而得到過大的RJ結果,最終導致過大的TJ結果,帶來測量誤差。

滄海桑田話抖動(上)

圖16? 數據中存在XTALK引起ABUJ抖動時頻譜法分析RJ產生誤差

下期內容:

?第二期:?

03.?抖動測試的演進和新挑戰(下)

04.?影響抖動測試結果和精度的因素

05.?從抖動測試到相噪測試——實時示波器的新戰場


參考文獻:

Ref[1]:?Jitter Analysis: The dual-Dirac Model,RJ/DJ,and Q-Scale. Keysight Technologies,5989-3206EN

Ref[2]:?Finding Sources of Jitter with Real-Time Jitter Analysis. Keysight Technologies,5888-0740EN

Ref[3]:?Analyzing Jitter Using EZJIT Plus Software. Keysight Technologies,5989-3776EN

Ref[4]:?Selecting RJ Bandwidth in EZJIT Plus Software. Keysight Technologies,5989-5065EN

Ref[5]:?Choosing the ISI Filter Size for EZJIT Plus Arbitrary Data Jitter Analysis.? Keysight Technologies,5989-4974EN

Ref[6]:?PCI ExpressTM Jitter Modeling Revision 1.0RD, PCI-Sig.

Ref[7]:?PCIE4.0 Base Specfication.PCI-Sig.

Ref[8]:?PCIE5.0 Base Specification.PCI-sig.

Ref[9]:?UXR Series Datasheet.Keysight Technologies,5992-3132EN

------轉自是德科技------



News / 推薦新聞
2020 - 06 - 02
點擊次數: 102
為了評估產品的使用壽命,或者驗證產品是否在預期的使用、運輸或儲存等各種場景下的性能,就需要對其在研發、設計驗證及抽檢等環節進行可靠性測試。測試的項目包括溫度、電壓、電流、頻率、流量、應變等多種參數,而且往往還需要對眾多測試點進行長時間跟蹤測量。這種測試,數據采集器是最常用的測試儀表之一。提示#1: 被質疑的數據采集vs數字化儀數據采集器是大家在測試過程中最經常用到的,例如典型的從惠普年代...
2020 - 05 - 27
點擊次數: 21
2020注定是不平凡的一年!美股4次熔斷,疫情讓股神巴菲特也感嘆「活久見」;但疫情期間網上流傳的一個視頻爆表了:被防護服包裹的醫生戴著智能頭盔,把實時影像直接傳到后臺的專家會診團隊;機器人不知疲倦地在給每個病房送藥;無人機在空中提醒著聚集的人群; 更有小萌機器人幫主人上街買菜…這次疫情,讓我們重新認識了,物聯網和人工智能潛在的巨大市場價值!或許,股神鷹一樣的眼神,也在這個市場中尋求最大的...
0
2019 - 08 - 28
Copyright ©2005 - 2013 上海精測電子有限公司
犀牛云提供企業云服務

上海市北京東路668號,(科技京城)西樓15層E室

深圳市科技南六路29號萬德萊大廈南3A

南京市綠都大道4號C-2棟506室

 400-018-5117,0755-88265155 
 25-58838327
傳真:+86 0755-2788 8009
郵編:330520

上海精測電子有限公司,深圳精測實業發展有限公司
南京精測國際貿易有限公司

X
1

QQ設置

  • 在線咨詢
3

SKYPE 設置

4

阿里旺旺設置

6
展開
闲来湖南麻将2元微信群 今日双色球阳光探码图 刮刮乐表情包 打麻将视频 股票t0交易平台合 姚记捕鱼官方下载 11选5神奇规律 优乐麻将为什么打不开 股票在线行情软件 喜迎棋牌手机版下载 股票入门基础知识怎